Tuesday, October 6, 2015

Page 473

43, 44, 47, 54, 56, 58, 65

Problem 43

Problem. Set up and evaluate the definite integral for the area of the surface generated by revolving the curve $y = \sqrt[3]{x} + 2$ about the y-axis.

Solution. Note that the curve is revolved about the y-axis, not the x-axis. It will be easier if we reverse the roles of x and y. Then the function is $x = (y - 2)^3$ and

$$x' = 3(y-2)^2$$

Then

$$\sqrt{1 + (x')^2} = \sqrt{1 + 9(y-2)^4}.$$

According to the drawing, x goes from 1 to 8, so y goes from 3 to 4. The surface area is

$$S = \int_{3}^{4} 2\pi (y-2)^{3} \sqrt{1+9(y-2)^{4}} \, dy.$$

Let u = y - 2 and du = dy. Then

$$S = 2\pi \int_{1}^{2} u^{3} \sqrt{1 + 9u^{4}} \, du.$$

Now let $v = 1 + 9u^4$ and $dv = 36u^3 du$. Then

$$S = \frac{2\pi}{36} \int_{1}^{2} 36u^{3}\sqrt{1+9u^{4}} \, du$$

= $\frac{\pi}{18} \int_{10}^{145} \sqrt{v} \, dv$
= $\frac{\pi}{18} \left[\frac{2}{3}v^{3/2}\right]_{10}^{145}$
= $\frac{\pi}{27} \left(145^{3/2} - 10^{3/2}\right)$
= $\frac{\pi}{27} \left(145\sqrt{145} - 10\sqrt{10}\right).$

Problem 44

Problem. Set up and evaluate the definite integral for the area of the surface generated by revolving the curve $y = 9 - x^2$ about the y-axis.

Solution. The curve is revolved about the y-axis, so we will (again) reverse the roles of x and y. (The book used a somewhat different approach in Example 7.) The function is $x = \sqrt{9-y}$.

$$x' = -\frac{1}{2}(9-y)^{-1/2}$$
$$= -\frac{1}{2\sqrt{9-y}}.$$

Then

$$\sqrt{1+(x')^2} = \sqrt{1+\frac{1}{4(9-y)}}.$$

The surface area is

$$S = \int_0^9 2\pi \sqrt{9 - y} \sqrt{1 + \frac{1}{4(9 - y)}} \, dy$$
$$= 2\pi \int_0^9 \sqrt{(9 - y) + \frac{1}{4}} \, dy.$$

At this point, it might be helpful to use the substitution u = 9 - y and du = -du. We get

$$S = -2\pi \int_{0}^{9} \sqrt{(9-y) + \frac{1}{4}} (-dy)$$
$$= -2\pi \int_{9}^{0} \sqrt{u + \frac{1}{4}} du$$
$$= 2\pi \int_{0}^{9} \sqrt{u + \frac{1}{4}} du$$

One more substitution: let $v = u + \frac{1}{4}$ and dv = du. Then

$$S = 2\pi \int_{1/4}^{37/4} \sqrt{v} \, dv$$

= $2\pi \left[\frac{2}{3}v^{3/2}\right]_{1/4}^{37/4}$
= $\frac{4\pi}{3} \left(\left(\frac{37}{4}\right)^{3/2} - \left(\frac{1}{4}\right)^{3/2}\right)$
= $\frac{4\pi}{3} \left(\frac{37^{3/2}}{8} - \frac{1}{8}\right)$
= $\frac{4\pi}{3} \left(\frac{37\sqrt{37} - 1}{8}\right)$
= $\frac{(37\sqrt{37} - 1)\pi}{6}$.

Problem 47

Problem. Use the integration capabilities of a graphing utility to approximate the surface are of the solid of revolution of $y = \sin x$ about the x-axis over $[0, \pi]$.

Solution. We have $y' = \cos x$, so the integral representing the surface area is

$$\int_0^\pi 2\pi \sin x \sqrt{1 + \cos^2 x} \, dx.$$

The TI-83 reports this value to be 14.4236.

Problem 54

Problem. (a) Given a circular sector with radius L and central angle θ , show that the area of the sector is given by

$$S = \frac{1}{2}L^2\theta.$$

(b) By joining the straight-line edges of the sector in part (a) a right circular cone is formed and the lateral surface area of the cone is the same as the area of the sector. Show that the area is $S = \pi r L$, where r is the radius of the base of the cone.

- (c) Use the result of part (b) to verify that the formula for the lateral surface area of the frustum of a cone with slant height L and radii r_1 and r_2 is $S = \pi (r_1 + r_2)L$.
- Solution. (a) The area of the full circle is πL^2 . With the sector taken out, the remaining area is a fraction $\frac{\theta}{2\pi}$ of the full circle. Thus, the area is

$$S = (\pi L^2) \cdot \frac{\theta}{2\pi}$$
$$= \frac{1}{2}L^2\theta.$$

(b) If the base radius of the cone is r, then the circumference of the base is $2\pi r$. However, when the cone is slit and flattened, then it is a portion of a circle of radius L, whose circumference is $2\pi L$. So it represents a fraction $\frac{2\pi r}{2\pi L} = \frac{r}{L}$ of the full circle. Thus, the angle, in radians, of the (shaded) region is $\theta = 2\pi \cdot \frac{r}{L}$. So the surface area of the cone is

$$\frac{1}{2}L^2\theta = \frac{1}{2}L^2\left(\frac{2\pi r}{L}\right)$$
$$= \pi rL.$$

(c) The surface area of the frustum is the surface area of a full cone of base radius r_2 and lateral height L + h (where h is the remaining distance to the vertex) minus the surface area of a cone of base radius r_1 and lateral height h. So the surface area is

$$S = \pi r_2(L+h) - \pi r_1 h$$

= $\pi (r_2 L + r_2 h - r_1 h)$
= $\pi (r_2 L + (r_2 - r_1)h).$

However, by similar triangles (cross section),

$$\frac{r_2}{L+h} = \frac{r_1}{h},$$
$$r_2h = r_1(L+h)$$
$$= r_1L + r_1h,$$
$$(r_2 - r_1)h = r_1L.$$

Therefore,

$$S = \pi \left(r_2 L + r_1 L \right)$$
$$= \pi (r_1 + r_2) L.$$

Problem 56

Problem. A right circular cone is generated by revolving the region bounded by y = hx/r, y = h, and x = 0 about the y-axis. Verify that the lateral surface area of the cone is $S = \pi r \sqrt{r^2 + h^2}$.

Solution. The quick way to do this is to use the Pythagorean Theorem to note that $L = \sqrt{r^2 + h^2}$ and then use part (b) of problem 54. Done.

On the other hand, using integration, $y' = \frac{h}{r}$, so

$$S = \int_0^r 2\pi x \sqrt{1 + \frac{h^2}{r^2}} \, dx$$

= $2\pi \sqrt{1 + \frac{h^2}{r^2}} \int_0^r x \, dx$
= $2\pi \sqrt{1 + \frac{h^2}{r^2}} \left[\frac{1}{2}x^2\right]_0^r$
= $2\pi \sqrt{1 + \frac{h^2}{r^2}} \cdot \frac{1}{2}r^2$
= $\pi r \sqrt{r^2 + h^2}$.

Problem 58

Problem. Find the area of the zone of a sphere formed by revolving the graph of $y = \sqrt{r^2 - x^2}$, $0 \le x \le a$, about the *y*-axis.

Solution. We have

$$y' = -\frac{x}{\sqrt{r^2 - x^2}}.$$

So the surface area is

$$S = \int_0^a 2\pi x \sqrt{1 + \frac{x^2}{r^2 - x^2}} \, dx$$

= $2\pi \int_0^a x \sqrt{\frac{r^2}{r^2 - x^2}} \, dx$
= $2\pi \int_0^a \frac{xr}{\sqrt{r^2 - x^2}} \, dx$
= $2\pi r \int_0^a \frac{x}{\sqrt{r^2 - x^2}} \, dx$

Let $u = r^2 - x^2$ and $du = -2x \, dx$. Then

$$S = -\pi r \int_{0}^{a} \frac{-2x}{\sqrt{r^{2} - x^{2}}} dx$$
$$= -\pi r \int_{r^{2}}^{r^{2} - a^{2}} \frac{1}{\sqrt{u}} du$$
$$= \pi r \int_{r^{2} - a^{2}}^{r^{2}} u^{-1/2} du$$
$$= \pi r \left[2u^{1/2} \right]_{r^{2} - a^{2}}^{r^{2}}$$
$$= \pi r \left(2r - 2\sqrt{r^{2} - a^{2}} \right)$$
$$= \pi r \left(2r - 2\sqrt{r^{2} - a^{2}} \right)$$
$$= 2\pi r \left(r - \sqrt{r^{2} - a^{2}} \right).$$

Note that if a = r, then the surface area is $S = 2\pi r^2$ which is the surface of half a sphere of radius r.

Problem 65

Problem. Find the area of the surface formed by revolving the protion oin the first quadrant of the graph of $x^{2/3} + y^{2/3} = 4$, $0 \le x \le 8$, about the *y*-axis.

Solution. As in an earlier problem, we find

$$y' = (4 - x^{2/3})^{1/2} x^{-1/3}$$
$$= \frac{\sqrt{4 - x^{2/3}}}{x^{1/3}}.$$

and

$$\sqrt{1 + (y')^2} = \sqrt{1 + \frac{4 - x^2/3}{x^{2/3}}}$$
$$= \sqrt{1 + \frac{4}{x^{2/3}} - 1}$$
$$= \sqrt{\frac{4}{x^{2/3}}}$$
$$= \frac{2}{x^{1/3}}.$$

Then the surface area is

$$S = \int_0^8 2\pi x \cdot \frac{2}{x^{1/3}} dx$$

= $4\pi \int_0^8 x^{2/3} dx$
= $4\pi \left[\frac{3}{5}x^{5/3}\right]_0^8$
= $\frac{12\pi}{5} \cdot 32$
= $\frac{384\pi}{5}$.