Tuesday, October 6, 2015

Page 473

$43,44,47,54,56,58,65$

Problem 43

Problem. Set up and evaluate the definite integral for the area of the surface generated by revolving the curve $y=\sqrt[3]{x}+2$ about the y-axis.

Solution. Note that the curve is revolved about the y-axis, not the x-axis. It will be easier if we reverse the roles of x and y. Then the function is $x=(y-2)^{3}$ and

$$
x^{\prime}=3(y-2)^{2} .
$$

Then

$$
\sqrt{1+\left(x^{\prime}\right)^{2}}=\sqrt{1+9(y-2)^{4}} .
$$

According to the drawing, x goes from 1 to 8 , so y goes from 3 to 4 . The surface area is

$$
S=\int_{3}^{4} 2 \pi(y-2)^{3} \sqrt{1+9(y-2)^{4}} d y
$$

Let $u=y-2$ and $d u=d y$. Then

$$
S=2 \pi \int_{1}^{2} u^{3} \sqrt{1+9 u^{4}} d u
$$

Now let $v=1+9 u^{4}$ and $d v=36 u^{3} d u$. Then

$$
\begin{aligned}
S & =\frac{2 \pi}{36} \int_{1}^{2} 36 u^{3} \sqrt{1+9 u^{4}} d u \\
& =\frac{\pi}{18} \int_{10}^{145} \sqrt{v} d v \\
& =\frac{\pi}{18}\left[\frac{2}{3} v^{3 / 2}\right]_{10}^{145} \\
& =\frac{\pi}{27}\left(145^{3 / 2}-10^{3 / 2}\right) \\
& =\frac{\pi}{27}(145 \sqrt{145}-10 \sqrt{10}) .
\end{aligned}
$$

Problem 44

Problem. Set up and evaluate the definite integral for the area of the surface generated by revolving the curve $y=9-x^{2}$ about the y-axis.

Solution. The curve is revolved about the y-axis, so we will (again) reverse the roles of x and y. (The book used a somewhat different approach in Example 7.) The function is $x=\sqrt{9-y}$.

$$
\begin{aligned}
x^{\prime} & =-\frac{1}{2}(9-y)^{-1 / 2} \\
& =-\frac{1}{2 \sqrt{9-y}} .
\end{aligned}
$$

Then

$$
\sqrt{1+\left(x^{\prime}\right)^{2}}=\sqrt{1+\frac{1}{4(9-y)}}
$$

The surface area is

$$
\begin{aligned}
S & =\int_{0}^{9} 2 \pi \sqrt{9-y} \sqrt{1+\frac{1}{4(9-y)}} d y \\
& =2 \pi \int_{0}^{9} \sqrt{(9-y)+\frac{1}{4}} d y .
\end{aligned}
$$

At this point, it might be helpful to use the substitution $u=9-y$ and $d u=-d u$. We get

$$
\begin{aligned}
S & =-2 \pi \int_{0}^{9} \sqrt{(9-y)+\frac{1}{4}}(-d y) \\
& =-2 \pi \int_{9}^{0} \sqrt{u+\frac{1}{4}} d u \\
& =2 \pi \int_{0}^{9} \sqrt{u+\frac{1}{4}} d u
\end{aligned}
$$

One more substitution: let $v=u+\frac{1}{4}$ and $d v=d u$. Then

$$
\begin{aligned}
S & =2 \pi \int_{1 / 4}^{37 / 4} \sqrt{v} d v \\
& =2 \pi\left[\frac{2}{3} v^{3 / 2}\right]_{1 / 4}^{37 / 4} \\
& =\frac{4 \pi}{3}\left(\left(\frac{37}{4}\right)^{3 / 2}-\left(\frac{1}{4}\right)^{3 / 2}\right) \\
& =\frac{4 \pi}{3}\left(\frac{37^{3 / 2}}{8}-\frac{1}{8}\right) \\
& =\frac{4 \pi}{3}\left(\frac{37 \sqrt{37}-1}{8}\right) \\
& =\frac{(37 \sqrt{37}-1) \pi}{6}
\end{aligned}
$$

Problem 47

Problem. Use the integration capabilities of a graphing utility to approximate the surface are of the solid of revolution of $y=\sin x$ about the x-axis over $[0, \pi]$.

Solution. We have $y^{\prime}=\cos x$, so the integral representing the surface area is

$$
\int_{0}^{\pi} 2 \pi \sin x \sqrt{1+\cos ^{2} x} d x .
$$

The TI-83 reports this value to be 14.4236 .

Problem 54

Problem. (a) Given a circular sector with radius L and central angle θ, show that the area of the sector is given by

$$
S=\frac{1}{2} L^{2} \theta .
$$

(b) By joining the straight-line edges of the sector in part (a) a right circular cone is formed and the lateral surface area of the cone is the same as the area of the sector. Show that the area is $S=\pi r L$, where r is the radius of the base of the cone.
(c) Use the result of part (b) to verify that the formula for the lateral surface area of the frustum of a cone with slant height L and radii r_{1} and r_{2} is $S=\pi\left(r_{1}+r_{2}\right) L$.

Solution. (a) The area of the full circle is πL^{2}. With the sector taken out, the remaining area is a fraction $\frac{\theta}{2 \pi}$ of the full circle. Thus, the area is

$$
\begin{aligned}
S & =\left(\pi L^{2}\right) \cdot \frac{\theta}{2 \pi} \\
& =\frac{1}{2} L^{2} \theta .
\end{aligned}
$$

(b) If the base radius of the cone is r, then the circumference of the base is $2 \pi r$. However, when the cone is slit and flattened, then it is a portion of a circle of radius L, whose circumference is $2 \pi L$. So it represents a fraction $\frac{2 \pi r}{2 \pi L}=\frac{r}{L}$ of the full circle. Thus, the angle, in radians, of the (shaded) region is $\theta=2 \pi \cdot \frac{r}{L}$. So the surface area of the cone is

$$
\begin{aligned}
\frac{1}{2} L^{2} \theta & =\frac{1}{2} L^{2}\left(\frac{2 \pi r}{L}\right) \\
& =\pi r L
\end{aligned}
$$

(c) The surface area of the frustum is the surface area of a full cone of base radius r_{2} and lateral height $L+h$ (where h is the remaining distance to the vertex) minus the surface area of a cone of base radius r_{1} and lateral height h. So the surface area is

$$
\begin{aligned}
S & =\pi r_{2}(L+h)-\pi r_{1} h \\
& =\pi\left(r_{2} L+r_{2} h-r_{1} h\right) \\
& =\pi\left(r_{2} L+\left(r_{2}-r_{1}\right) h\right) .
\end{aligned}
$$

However, by similar triangles (cross section),

$$
\begin{aligned}
\frac{r_{2}}{L+h} & =\frac{r_{1}}{h}, \\
r_{2} h & =r_{1}(L+h) \\
& =r_{1} L+r_{1} h, \\
\left(r_{2}-r_{1}\right) h & =r_{1} L .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
S & =\pi\left(r_{2} L+r_{1} L\right) \\
& =\pi\left(r_{1}+r_{2}\right) L .
\end{aligned}
$$

Problem 56

Problem. A right circular cone is generated by revolving the region bounded by $y=$ $h x / r, y=h$, and $x=0$ about the y-axis. Verify that the lateral surface area of the cone is $S=\pi r \sqrt{r^{2}+h^{2}}$.

Solution. The quick way to do this is to use the Pythagorean Theorem to note that $L=\sqrt{r^{2}+h^{2}}$ and then use part (b) of problem 54. Done.

On the other hand, using integration, $y^{\prime}=\frac{h}{r}$, so

$$
\begin{aligned}
S & =\int_{0}^{r} 2 \pi x \sqrt{1+\frac{h^{2}}{r^{2}}} d x \\
& =2 \pi \sqrt{1+\frac{h^{2}}{r^{2}}} \int_{0}^{r} x d x \\
& =2 \pi \sqrt{1+\frac{h^{2}}{r^{2}}}\left[\frac{1}{2} x^{2}\right]_{0}^{r} \\
& =2 \pi \sqrt{1+\frac{h^{2}}{r^{2}}} \cdot \frac{1}{2} r^{2} \\
& =\pi r \sqrt{r^{2}+h^{2}} .
\end{aligned}
$$

Problem 58

Problem. Find the area of the zone of a sphere formed by revolving the graph of $y=\sqrt{r^{2}-x^{2}}, 0 \leq x \leq a$, about the y-axis.

Solution. We have

$$
y^{\prime}=-\frac{x}{\sqrt{r^{2}-x^{2}}} .
$$

So the surface area is

$$
\begin{aligned}
S & =\int_{0}^{a} 2 \pi x \sqrt{1+\frac{x^{2}}{r^{2}-x^{2}}} d x \\
& =2 \pi \int_{0}^{a} x \sqrt{\frac{r^{2}}{r^{2}-x^{2}}} d x \\
& =2 \pi \int_{0}^{a} \frac{x r}{\sqrt{r^{2}-x^{2}}} d x \\
& =2 \pi r \int_{0}^{a} \frac{x}{\sqrt{r^{2}-x^{2}}} d x
\end{aligned}
$$

Let $u=r^{2}-x^{2}$ and $d u=-2 x d x$. Then

$$
\begin{aligned}
S & =-\pi r \int_{0}^{a} \frac{-2 x}{\sqrt{r^{2}-x^{2}}} d x \\
& =-\pi r \int_{r^{2}}^{r^{2}-a^{2}} \frac{1}{\sqrt{u}} d u \\
& =\pi r \int_{r^{2}-a^{2}}^{r^{2}} u^{-1 / 2} d u \\
& =\pi r\left[2 u^{1 / 2}\right]_{r^{2}-a^{2}}^{r^{2}} \\
& =\pi r\left(2 r-2 \sqrt{r^{2}-a^{2}}\right) \\
& =\pi r\left(2 r-2 \sqrt{r^{2}-a^{2}}\right) \\
& =2 \pi r\left(r-\sqrt{r^{2}-a^{2}}\right) .
\end{aligned}
$$

Note that if $a=r$, then the surface area is $S=2 \pi r^{2}$ which is the surface of half a sphere of radius r.

Problem 65

Problem. Find the area of the surface formed by revolving the protion oin the first quadrant of the graph of $x^{2 / 3}+y^{2 / 3}=4,0 \leq x \leq 8$, about the y-axis.
Solution. As in an earlier problem, we find

$$
\begin{aligned}
y^{\prime} & =\left(4-x^{2 / 3}\right)^{1 / 2} x^{-1 / 3} \\
& =\frac{\sqrt{4-x^{2 / 3}}}{x^{1 / 3}}
\end{aligned}
$$

and

$$
\begin{aligned}
\sqrt{1+\left(y^{\prime}\right)^{2}} & =\sqrt{1+\frac{4-x^{2} / 3}{x^{2 / 3}}} \\
& =\sqrt{1+\frac{4}{x^{2 / 3}}-1} \\
& =\sqrt{\frac{4}{x^{2 / 3}}} \\
& =\frac{2}{x^{1 / 3}}
\end{aligned}
$$

Then the surface area is

$$
\begin{aligned}
S & =\int_{0}^{8} 2 \pi x \cdot \frac{2}{x^{1 / 3}} d x \\
& =4 \pi \int_{0}^{8} x^{2 / 3} d x \\
& =4 \pi\left[\frac{3}{5} x^{5 / 3}\right]_{0}^{8} \\
& =\frac{12 \pi}{5} \cdot 32 \\
& =\frac{384 \pi}{5} .
\end{aligned}
$$

