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Problem 43

Problem. Set up and evaluate the definite integral for the area of the surface generated

by revolving the curve y = 3
√
x+ 2 about the y-axis.

Solution. Note that the curve is revolved about the y-axis, not the x-axis. It will be

easier if we reverse the roles of x and y. Then the function is x = (y − 2)3 and

x′ = 3(y − 2)2.

Then √
1 + (x′)2 =

√
1 + 9(y − 2)4.

According to the drawing, x goes from 1 to 8, so y goes from 3 to 4. The surface area

is

S =

∫ 4

3

2π(y − 2)3
√

1 + 9(y − 2)4 dy.

Let u = y − 2 and du = dy. Then

S = 2π

∫ 2

1

u3
√

1 + 9u4 du.

Now let v = 1 + 9u4 and dv = 36u3 du. Then

S =
2π

36

∫ 2

1

36u3
√

1 + 9u4 du

=
π

18

∫ 145

10

√
v dv

=
π

18

[
2

3
v3/2

]145

10

=
π

27

(
1453/2 − 103/2

)
=

π

27

(
145
√

145− 10
√

10
)
.
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Problem 44

Problem. Set up and evaluate the definite integral for the area of the surface generated

by revolving the curve y = 9− x2 about the y-axis.

Solution. The curve is revolved about the y-axis, so we will (again) reverse the roles

of x and y. (The book used a somewhat different approach in Example 7.) The

function is x =
√

9− y.

x′ = −1

2
(9− y)−1/2

= − 1

2
√

9− y
.

Then

√
1 + (x′)2 =

√
1 +

1

4(9− y)
.

The surface area is

S =

∫ 9

0

2π
√

9− y

√
1 +

1

4(9− y)
dy

= 2π

∫ 9

0

√
(9− y) +

1

4
dy.

At this point, it might be helpful to use the substitution u = 9 − y and du = −du.

We get

S = −2π

∫ 9

0

√
(9− y) +

1

4
(−dy)

= −2π

∫ 0

9

√
u+

1

4
du

= 2π

∫ 9

0

√
u+

1

4
du
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One more substitution: let v = u+ 1
4

and dv = du. Then

S = 2π

∫ 37/4

1/4

√
v dv

= 2π

[
2

3
v3/2

]37/4

1/4

=
4π

3

((
37

4

)3/2

−
(

1

4

)3/2
)

=
4π

3

(
373/2

8
− 1

8

)
=

4π

3

(
37
√

37− 1

8

)

=
(37
√

37− 1)π

6
.

Problem 47

Problem. Use the integration capabilities of a graphing utility to approximate the

surface are of the solid of revolution of y = sinx about the x-axis over [0, π].

Solution. We have y′ = cosx, so the integral representing the surface area is∫ π

0

2π sinx
√

1 + cos2 x dx.

The TI-83 reports this value to be 14.4236.

Problem 54

Problem. (a) Given a circular sector with radius L and central angle θ, show that the

area of the sector is given by

S =
1

2
L2θ.

(b) By joining the straight-line edges of the sector in part (a) a right circular cone

is formed and the lateral surface area of the cone is the same as the area of the

sector. Show that the area is S = πrL, where r is the radius of the base of the

cone.
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(c) Use the result of part (b) to verify that the formula for the lateral surface area of

the frustum of a cone with slant height L and radii r1 and r2 is S = π(r1 + r2)L.

Solution. (a) The area of the full circle is πL2. With the sector taken out, the re-

maining area is a fraction
θ

2π
of the full circle. Thus, the area is

S = (πL2) · θ
2π

=
1

2
L2θ.

(b) If the base radius of the cone is r, then the circumference of the base is 2πr.

However, when the cone is slit and flattened, then it is a portion of a circle of

radius L, whose circumference is 2πL. So it represents a fraction
2πr

2πL
=
r

L
of

the full circle. Thus, the angle, in radians, of the (shaded) region is θ = 2π · r
L

.

So the surface area of the cone is

1

2
L2θ =

1

2
L2

(
2πr

L

)
= πrL.

(c) The surface area of the frustum is the surface area of a full cone of base radius r2

and lateral height L+ h (where h is the remaining distance to the vertex) minus

the surface area of a cone of base radius r1 and lateral height h. So the surface

area is

S = πr2(L+ h)− πr1h
= π (r2L+ r2h− r1h)

= π (r2L+ (r2 − r1)h) .

However, by similar triangles (cross section),

r2
L+ h

=
r1
h
,

r2h = r1(L+ h)

= r1L+ r1h,

(r2 − r1)h = r1L.
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Therefore,

S = π (r2L+ r1L)

= π(r1 + r2)L.

Problem 56

Problem. A right circular cone is generated by revolving the region bounded by y =

hx/r, y = h, and x = 0 about the y-axis. Verify that the lateral surface area of the

cone is S = πr
√
r2 + h2.

Solution. The quick way to do this is to use the Pythagorean Theorem to note that

L =
√
r2 + h2 and then use part (b) of problem 54. Done.

On the other hand, using integration, y′ = h
r
, so

S =

∫ r

0

2πx

√
1 +

h2

r2
dx

= 2π

√
1 +

h2

r2

∫ r

0

x dx

= 2π

√
1 +

h2

r2

[
1

2
x2

]r
0

= 2π

√
1 +

h2

r2
· 1

2
r2

= πr
√
r2 + h2.

Problem 58

Problem. Find the area of the zone of a sphere formed by revolving the graph of

y =
√
r2 − x2, 0 ≤ x ≤ a, about the y-axis.

Solution. We have

y′ = − x√
r2 − x2

.
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So the surface area is

S =

∫ a

0

2πx

√
1 +

x2

r2 − x2
dx

= 2π

∫ a

0

x

√
r2

r2 − x2
dx

= 2π

∫ a

0

xr√
r2 − x2

dx

= 2πr

∫ a

0

x√
r2 − x2

dx

Let u = r2 − x2 and du = −2x dx. Then

S = −πr
∫ a

0

−2x√
r2 − x2

dx

= −πr
∫ r2−a2

r2

1√
u
du

= πr

∫ r2

r2−a2

u−1/2 du

= πr
[
2u1/2

]r2
r2−a2

= πr
(

2r − 2
√
r2 − a2

)
= πr

(
2r − 2

√
r2 − a2

)
= 2πr

(
r −
√
r2 − a2

)
.

Note that if a = r, then the surface area is S = 2πr2 which is the surface of half a

sphere of radius r.

Problem 65

Problem. Find the area of the surface formed by revolving the protion oin the first

quadrant of the graph of x2/3 + y2/3 = 4, 0 ≤ x ≤ 8, about the y-axis.

Solution. As in an earlier problem, we find

y′ = (4− x2/3)1/2x−1/3

=

√
4− x2/3

x1/3
.
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and

√
1 + (y′)2 =

√
1 +

4− x2/3

x2/3

=

√
1 +

4

x2/3
− 1

=

√
4

x2/3

=
2

x1/3
.

Then the surface area is

S =

∫ 8

0

2πx · 2

x1/3
dx

= 4π

∫ 8

0

x2/3 dx

= 4π

[
3

5
x5/3

]8

0

=
12π

5
· 32

=
384π

5
.
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